Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transfusion ; 62(1): 22-27, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34778992

RESUMO

BACKGROUND: The current approach to manufacture cold-stored platelets (CSP) replicates that of room temperature-stored platelets (RSP). However, this production method is associated with aggregate formation in CSP, a major pitfall that leads to significant wastage. We hypothesized that isolating platelets from whole blood as platelet-rich plasma (PRP) and storing them at a lower concentration reduces aggregates and that conventional bedside transfusion filtration removes CSP aggregates. METHODS: We collected platelets from healthy humans by apheresis (AP) and by phlebotomy, from which we generated platelet-rich plasma (PRP). We split each AP and PRP platelets into two equal aliquots, storing one at 22°C (RT-PRP and RT-AP) and the other at 4°C (4C-PRP and 4C-AP). We evaluated platelets on day 0 and day 7 of storage. After storage, we measured platelet counts, aggregates, and other key characteristics before and after filtration by a bedside filter. RESULTS: After storage, the 4C-AP platelet counts decreased significantly. 4C-PRP preserved glucose better and prevented a significant increase in lactate contrary to 4C-AP. Filtration led to significantly lower platelet counts in both 4C-PRP and 4C-AP but not in their RT counterparts. Post filtration, we observed 50% fewer aggregates only in 4C-AP, whereas 4C-PRP showed an unexpected but significant increase in aggregates. Testing confirmed activation during storage but filtration did not further activate platelets. CONCLUSION: We provide evidence that 4C-PRP is an alternative to 4C-AP and that bedside filters reduce aggregates from 4C-AP. Further studies are needed to evaluate the hemostatic potential of 4C-PRP and the management of aggregates.


Assuntos
Remoção de Componentes Sanguíneos , Plasma Rico em Plaquetas , Remoção de Componentes Sanguíneos/métodos , Plaquetas/fisiologia , Preservação de Sangue/métodos , Temperatura Baixa , Humanos
3.
Blood Adv ; 5(19): 3839-3849, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34478498

RESUMO

Platelets are currently stored at room temperature before transfusion to maximize circulation time. This approach has numerous downsides, including limited storage duration, bacterial growth risk, and increased costs. Cold storage could alleviate these problems. However, the functional consequences of cold exposure for platelets are poorly understood. In the present study, we compared the function of cold-stored platelets (CSP) with that of room temperature-stored platelets (RSP) in vitro, in vivo, and posttransfusion. CSP formed larger aggregates under in vitro shear while generating similar contractile forces compared with RSP. We found significantly reduced glycoprotein VI (GPVI) levels after cold exposure of 5 to 7 days. After transfusion into humans, CSP were mostly equivalent to RSP; however, their rate of aggregation in response to the GPVI agonist collagen was significantly lower. In a mouse model of platelet transfusion, we found a significantly lower response rate to the GPVI-dependent agonist convulxin and significantly lower GPVI levels on the surface of transfused platelets after cold storage. In summary, our data support an immediate but short-lived benefit of cold storage and highlight the need for thorough investigations of CSP. This trial was registered at www.clinicaltrials.gov as #NCT03787927.


Assuntos
Plaquetas , Preservação de Sangue , Animais , Criopreservação , Humanos , Camundongos , Transfusão de Plaquetas , Temperatura
4.
Transfusion ; 60(3): 613-621, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32017135

RESUMO

BACKGROUND: Cold (4°C)-stored platelets are currently under investigation for transfusion in bleeding patients. It is currently unknown how long cold-stored platelets can be stored for clinical applications. STUDY DESIGN AND METHODS: Twenty three subjects were recruited. Twenty-one subjects were available for in vivo assessment and received indium-111 radiolabeled, cold-stored platelets. We investigated 5- (n = 5), 10- (n = 6), 15- (n = 5), and 20-day-stored (n = 5) platelets and obtained samples for in vitro testing at baseline and after the designated storage time. Twenty three units were available for in vitro testing. Five- and 7-day (n = 5 each), room temperature (RT)-stored platelets served as the current clinical standard control. RESULTS: In vivo, we found a continuous decline in platelet recovery from 5 to 20 days. Platelet survival reached a low nadir after 10 days of storage. Ex vivo, we observed the maximum platelet αIIbß3 integrin response to collagen at 5 days of cold storage, and we saw a continuous decline thereafter. However, platelet integrin activation and mitochondrial membrane integrity were better preserved after 20 days at 4°C, compared to 5 days at RT. Platelet metabolic parameters suggest comparable results between 20-day cold-stored platelets and 5- or 7-day RT-stored platelets. CONCLUSION: In summary, we performed the first studies with extended, cold-stored, apheresis platelets in plasma for up to 20 days with a fresh comparator. Storing cold-stored platelets up to 20 days yields better results in vitro, but further studies in actively bleeding patients are needed to determine the best compromise between hemostatic efficacy and storage prolongation.


Assuntos
Plaquetas/fisiologia , Preservação de Sangue/métodos , Criopreservação , Humanos , Ativação Plaquetária/fisiologia , Transfusão de Plaquetas , Plaquetoferese/métodos , Fatores de Tempo
5.
Nucleic Acids Res ; 37(Database issue): D603-10, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18953024

RESUMO

The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users.


Assuntos
Bases de Dados Factuais , Metaboloma , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Redes e Vias Metabólicas , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...